Vegetation thresholds for the occurrence of millipedes (Diplopoda) in different tropical forest types in Andasibe, Madagascar

Authors

  • Lea Rebecca Spelzhausen University of Bremen, Center for Environmental Research and Sustainable Technology, Department of General and Theoretical Ecology, Leobener Str. 6, 28359 Bremen
  • Thomas Wesener Zoological Research Museum A. Koenig, Leibniz Institute for Animal Biodiversity, Bonn
  • Kai Schütte University of Hamburg, Zoological Institute, Department of Animal Ecology and Conservation, Martin-Luther-King-Platz 3, 20146 Hamburg

Keywords:

millipedes, reforestation, vegetation threshold, leaf litter, introduced species

Abstract

Forest clearance, especially in the tropics, leads to habitat loss for many organisms including litter-dwelling arthropods. Among other invertebrates, millipedes (Diplopoda) provide important ecosystem services like decomposition and nutrient cycling in forest ecosystems. Despite their importance, little is known about litter invertebrates’ response to tropical forest degradation and their role in reforestation. The present article should rather be regarded as a review of millipedes’ occurrence in tropical forests with a pilot study from Madagascar, because the sample size is small and results need to be confirmed. This pilot study investigated the relationship between millipedes and vegetation characteristics in the eastern rainforests of Madagascar, in the region of Andasibe, parts of which are undergoing reforestation. Vegetation characteristics were measured in ten different forests encompassing different types: remnant rainforest, secondary forest, old Eucalyptus plantations, recently enriched with indigenous tree species, and degraded sites. Millipede species were searched by hand, identified and their occurrence in relation to the environmental characteristics was described.

Vegetation characteristics differed between forest types. Old Eucalyptus plantations, secondary forest, and primary rainforest were associated with higher litter depth and more native millipede species than degraded sites and forests afforested with native tree species since 2007. Non-native millipedes occurred in all vegetation formations except the primary rainforest site and did not show any relationship with vegetation characteristics. In contrast, native millipedes’ occurrence was related to conditions associated with mature forest, such as high litter depth and high foliage cover. Logistic regression revealed a threshold of litter depth above which native millipedes are likely to occur. The results indicate that native millipedes are affected by forest degradation and are incompletely restored even when the afforested forest might approach the original state. Special care should be taken during reforestation efforts, as non-native soil arthropods can be introduced, completely replacing the indigenous biota.

 

Résumé

Les conséquences de la déforestation globale sont multiples. Pour la plupart des organismes, la déforestation est la cause principale de la destruction des habitats. Les arthropodes qui vivent sur le sol forestier ou dans le feuillage sont ainsi menacés, surtout dans les forêts tropicales. Ces organismes sont pourtant indispensables au maintien de la résilience de la forêt. Dans l’écosystème forestier, les millepattes et autres arthropodes sont très importants pour la mise à disposition de différents services écosystémiques, par exemple pour leur rôle dans le cycle des éléments nutritifs, la formation des sols et la décomposition. Malgré leur importance, peu d’informations sont disponibles sur la réaction des invertébrés suite à la dégradation des forêts et leur rôle dans la reforestation.

Cette étude tient surtout lieu de révision de l’occurrence des millepattes dans les forêts tropicales avec une étude pilote menée à Madagascar, dans la mesure où l'échantillonnage est réduit et que les résultats restent partiels. Cette étude pilote analyse les relations entre les millepattes et les caractéristiques végétales dans les forêts de l’Est de Madagascar, dans la région d’Andasibe. Ces forêts sont très diverses et dix types de forêt ont été considérés, à savoir une forêt récemment dégradée et une forêt dégradée, une forêt dégradée et reboisée avec des espèces arborées indigènes en 2007, 2012 ou 2015, des plantations d’Eucalyptus abandonnées depuis 1930 ou 1909, deux forêts secondaires, une forêt primaire. Dans ces différents types de forêt, les caractéristiques de la végétation ont été enregistrées et des millepattes ont été récoltés à la main. Les espèces de millepattes ont été identifiées et leur occurrence ont été analysées par rapport aux caractéristiques de la végétation. Les vieilles plantations d’Eucalyptus et les forêts secondaire et primaire étaient caractérisées par une couche plus épaisse de feuilles et davantage d’espèces de millepattes indigènes par rapport aux forêts dégradée et replantée. Les espèces allogènes étaient présentes dans tous les types de forêt à l’exception de la forêt primaire. La présence de ces espèces n’était pas liée aux caractéristiques de la végétation. En revanche, l’occurrence des espèces indigènes était associée à des conditions qui sont caractéristiques des forêts matures, par exemple une couche de feuilles épaisse et une couverture foliaire dense. L’analyse de régression logistique a révélé une valeur seuil pour la hauteur de la couche de feuilles mortes. Au-delà de ce seuil, il est probable que les millepattes indigènes soient présents. L’étude a montré que les millepattes indigènes sont impactés par la déforestation et qu’ils ne sont pas facilement restaurés même si la restauration semble permettre à la forêt de se rapprocher de son état initial.

References

Alegasan, P. 2016. Millipedes: Diversity, distribution and ecology. In: Arthropod Diversity and Conservation in the Tropics and the Sub-tropics. A. K. Chakravarthy and S. Sridhara(eds.), pp 119–137. Springer, Singapore.

Andriamananjara, A., Hewson, J., Razakamanarivo, H., Andrisoa, R. H., Ranaivoson, N., et al. 2016. Land cover impacts on aboveground and soil carbon stocks in Malagasy rainforest. Agriculture, Ecosystems & Environment 233, 3: 1–15. <https://doi.org/10.1016/j.agee.2016.08.030>

Attems, C. 1910. Myriopoden von Madagaskar, den Komoren und den Inseln Ostafrikas. In: Reise in Ostafrika in den Jahren 1903–1905. A. Voeltzkow (ed.), pp 73–115. Schweizerbartsche Verlagsbuchhandlung, Stuttgart.

Attems, C. 1914. Die indo-australischen Myriopoden. Archiv für Naturgeschichte 80A, 4: 1–398.

Attems, C. 1951. Myriapodes d’Afrique, de Madagascar et de la Réunion récoltés par le Pr. Paul Remy. Mémoires de l’Institut Scientifique de Madagascar, Série A, 5: 173–186.

Blackburn, T. M., Bellard, C. and Ricciardi, A. 2019. Alien versus native species as drivers of recent extinctions. Frontiers in Ecology and the Environment 17: 203–207. <https://doi.org/10.1002/fee.2020>

Bogyó, D., Magura, T., Nagy, D. D. and Tothmeresz, B. 2015. Distribution of millipedes (Myriapoda, Diplopoda) along a forest interior, forest edge, grassland habitat complex. ZooKeys 510: 181–195. <https://doi.org/10.3897/zookeys.510.8657>

Bulpitt, G. 2016. Congregating behavior and response to resource distribution of the Green House Millipede, Oxidus gracilis. PeerJ PrePrints 4: e2642v1. <https://doi.org/10.7287/peerj.preprints.2642v1>

Burghouts, T., Ernsting, G., Korthals, G. and De Vries, T. 1992. Litterfall, leaf litter decomposition and litter invertebrates in primary and selectively logged Dipterocarp forest in Sabah, Malaysia. Philosophical Transactions of the Royal Society B: Biological Sciences 335, 1275: 407–416. <https://doi.org/10.1098/rstb.1992.0032>

Cole, F. R., Medeiros, A. C., Loope, L. L. and Zuehlke, W. W. 1992. Effects of the Argentine Ant on arthropod fauna of Hawaiian high-elevation shrubland. Ecology 73, 4: 1313–1322. <https://doi.org/10.2307/1940678>

Cole, R. J., Holl, K. D., Zahawi, R. A., Wickey, P. and Townsend, A. R. 2016. Leaf litter arthropod responses to tropical forest restoration. Ecology and Evolution 6, 15: 5158–5168. <https://doi.org/10.1002/ece3.2220>

Coleman, D. C. and Wall, D. H. 2015. Soil fauna: Occurrence, biodiversity, and roles in ecosystem function. In: Soil Microbiology, Ecology and Biochemistry. E. A. Paul (ed.), pp 111–149. Elsevier.

David, J.-F., Devernay, S., Loucougaray, G. and Le Floc'h, E. 1999. Belowground biodiversity in a Mediterranean landscape: relationships between saprophagous macroarthropod communities and vegetation structure. Biodiversity & Conservation 8: 753–767. <https://doi.org/10.1023/A:1008842313832>

David, J.-F. 2009. Ecology of millipedes (Diplopoda) in the context of global change. Soil Organisms 81, 3: 719–733.

David, J.-F. and Handa, I. T. 2010. The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change. Biological Reviews 85, 4: 881–895. <https://doi.org/10.1111/j.1469-185X.2010.00138.x>

Decaëns, T., Jiménez, J. J., Gioia, C., Measey, G. J. and Lavelle, P. 2006. The values of soil animals for conservation biology. European Journal of Soil Biology 42, S1: 23–38. <https://doi.org/10.1016/j.ejsobi.2006.07.001>

Dolch, R. 2003. Andasibe (Périnet): are current efforts sufficient to protect Madagascar’s biodiversity hotspot? In: The Natural History of Madagascar. S. M. Goodman and J. P. Benstead (eds.), pp 1480–1485. The University of Chicago Press, Chicago.

Enghoff, H. 2003. Diplopoda, Millipedes. In: The Natural History of Madagascar. S. M. Goodman and J. P. Benstead (eds.), pp 617–627. The University of Chicago Press, Chicago.

Galanes, I. T. and Thomlinson, J. R. 2011. Soil millipede diversity in tropical forest patches and its relation to landscape structure in northeastern Puerto Rico. Biodiversity & Conservation 20, 13: 2967–2980. <https://doi.org/10.1007/s10531-011-0128-7>

Ganzhorn, J. U., Lowry, P. P., Schatz, G. E. and Sommer, S. 2001. The biodiversity of Madagascar: one of the world’s hottest hotspots on its way out. Oryx 35, 4: 346–348. <https://doi.org/10.1046/j.1365-3008.2001.00201.x>

García-Palacios, P., Maestre, F. T., Kattge, J. and Wall, D. H. 2013. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters 16, 8: 1045–1053. <https://doi.org/10.1111/ele.12137>

Golovatch, S. I. and Kime, R. D. 2009. Millipede (Diplopoda) distributions: A review. Soil Organisms 81, 3: 565–597. Available online <https://www.senckenberg.de/wp-content/uploads/2019/08/24_golovatch.pdf>

Goodman, S. M. and Benstead, J. P. 2005. Updated estimates of biotic diversity and endemism for Madagascar. Oryx 39, 1: 73–77. <https://doi.org/10.1017/S0030605305000128>

Höfer, H., Hanagarth, W., Garcia, M., Martius, C., Franklin, E., et al. 2001. Structure and function of soil fauna communities in Amazonian anthropogenic and natural ecosystems. European Journal of Soil Biology 37, 4: 229–235. <https://doi.org/10.1016/S1164-5563(01)01089-5>

Jeekel, C. A. W. 1999. A new Sechelleptus from Madagascar, with a key to the species of the genus (Diplopoda-Spriostreptida). Myriapod Memoranda 1: 45–57.

Johnson, C. J. 2013. Identifying ecological thresholds for regulating human activity: Effective conservation or wishful thinking? Biological Conservation 168: 57–65. <https://doi.org/10.1016/j.biocon.2013.09.012>

Keenan, R. J., Reams, G. A., Achard, F., de Freitas, J. V., Grainger, A., et al. 2015. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. Forest Ecology and Management 352: 9–20. <https://doi.org/10.1016/j.foreco.2015.06.014>

Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, et al. 2006. Soil invertebrates and ecosystem services. European Journal of Soil Biology 42: S3–S15. <https://doi.org/10.1016/j.ejsobi.2006.10.002>

Loranger-Merciris, G., Imbert, D., Bernhard-Reversat, F., Lavelle, P. and Ponge, J.-F. 2008. Litter N-content influences soil millipede abundance, species richness and feeding preferences in a semi-evergreen dry forest of Guadeloupe (Lesser Antilles). Biology and Fertility of Soils 45, 1: 93–98. <https://doi.org/10.1007/s00374-008-0321-3>

Lu, J., Turkington, R. and Zhou, Z.-k. 2016. The effects of litter quantity and quality on soil nutrients and litter invertebrates in the understory of two forests in southern China. Plant Ecology 217, 11: 1415–1428. <https://doi.org/10.1007/s11258-016-0600-2>

Mathieu, J., Rossi, J.-P., Mora, P., Lavelle, P., Martins, P. F. S., et al. 2005. Recovery of soil macrofauna communities after forest clearance in Eastern Amazonia, Brazil. Conservation Biology 19, 5: 1598–1605. <https://doi.org/10.1111/j.1523-1739.2005.00200.x>

Müller, J. and Bütler, R. 2010. A review of habitat thresholds for dead wood: A baseline for management recommendations in European forests. European Journal of Forest Research 129, 6: 981–992. <https://doi.org/doi: 10.1007/s10342-010-0400-5>

Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. and Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403, 6772: 853–858. <https://doi.org/10.1038/35002501>

Nakamura, A., Proctor, H. and Catterall, C. P. 2003. Using soil and litter arthropods to assess the state of rainforest restoration. Ecological Management & Restoration 4, S1: 20–28. <https://doi.org/10.1046/j.1442-8903.4.s.3.x>

Powers, J. S., Montgomery, R. A., Adair, E. C., Brearley, F. Q., DeWalt, S. J., et al. 2009. Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology 97, 4: 801–811. <https://doi.org/10.1111/j.1365-2745.2009.01515.x>

Rudolf, E. and Wesener, T. 2017a. IUCN Red List of Threatened Species: Zoosphaerium neptunus. The IUCN Red List of Threatened Species 2017: e.T65524274A65527955. <https://dx.doi.org/10.2305/IUCN.UK.2017-1.RLTS.T65524274A65527955.en>

Rudolf, E. and Wesener, T. 2017b. IUCN Red List of Threatened Species: Zoosphaerium platylabum. The IUCN Red List of Threatened Species 2017: e.T65525169A65527965. <https://dx.doi.org/10.2305/IUCN.UK.2017-1.RLTS.T65525169A65527965.en>

de Saussure, H. and Zehntner, L. 1897. Atlas de l'histoire naturelle des Myriapodes. In: Histoire Physique, Naturelle et Politique de Madagascar. A. Grandidier (ed.), pp. 1–12. Imprimerie Nationale, Paris.

de Saussure, H. and Zehntner, L. 1901. Myriapoden aus Madagaskar und Zansibar, gesammelt von Dr. A. Voeltzkow. Abhandlungen der Senckenburgischen naturforschenden Gesellschaft 26: 429–460.

de Saussure, H. and Zehntner, L. 1902. Myriapodes de Madagascar. In: Histoire Physique, Naturelle et Politique de Madagascar. A. Grandidier (ed.), pp. 13–15. Imprimerie Nationale, Paris.

Sayer, E. J., Sutcliffe, L. M. E., Ross, R. I. C. and Tanner, E. V. J. 2010. Arthropod abundance and diversity in a lowland tropical forest floor in Panama: The Role of habitat space vs. nutrient concentrations. Biotropica 42, 2: 194–200. <https://doi.org/10.1111/j.1744-7429.2009.00576.x>

Sloan, S. and Sayer, J. A. 2015. Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. Forest Ecology and Management 352: 134–145. <https://doi.org/10.1016/j.foreco.2015.06.013>

Snyder, B. A., Callaham, M. A. Jr. and Hendrix, P. F. 2011. Spatial variability of an invasive earthworm (Amynthas agrestis) population and potential impacts on soil characteristics and millipedes in the Great Smoky Mountains National Park, USA. Biological Invasions 13, 2: 349–358. <https://doi.org/10.1007/s10530-010-9826-4>

Snyder, B. A., Callaham, M. A. Jr., Lowe, C. N. and Hendrix, P. F. 2013. Earthworm invasion in North America: Food resource competition affects native millipede survival and invasive earthworm reproduction. Soil Biology and Biochemistry 57: 212–216. <https://doi.org/10.1016/j.soilbio.2012.08.022>

Snyder, B. A., Draney, M. L. and Sierwald, P. 2006. Development of an optimal sampling protocol for millipedes (Diplopoda). Journal of Insect Conservation 10, 3: 277–288. <https://doi.org/10.1007/s10841-006-6699-z>

Stašiov, S., Stašiová, A., Svitok, M., Michalková, E., Slobodník, B., et al.. 2012. Millipede (Diplopoda) communities in an arboretum: Influence of tree species and soil properties. Biologia 67, 5: 945–952. <https://doi.org/10.2478/s11756-012-0097-7>

Stoev, P., Zapparoli, M., Golovatch, S., Enghoff, H., Akkari, N. and Barber, A. 2010. Myriapods (Myriapoda). Chapter 7.2. BioRisk 4, 1: 97–130. <https://doi.org/10.3897/biorisk.4.51>

Tian, G., Brussard, L. and Kang, B. T. 1995. Breakdown of plant residues with contrasting chemical composition under humid tropical conditions: Effects of earthworms and millipedes. Soil Biology and Biochemistry 27, 3: 277–280. <https://doi.org/10.1016/0038-0717(94)00182-Z>

Tomlinson, A. 2014. Interactions between native and exotic detritivores and impacts on ecosystem processes. Doctoral dissertation. University of Auckland. Available online <https://researchspace.auckland.ac.nz/bitstream/handle/2292/21610/whole.pdf?sequence=2>

Vallan, D. 2002. Effects of anthropogenic environmental changes on amphibian diversity in the rain forests of eastern Madagascar. Journal of Tropical Ecology 18, 5: 725–742. <https://doi.org/10.1017/S026646740200247X>

van der Hoek, Y., Zuckerberg, B. and Manne, L. L. 2015. Application of habitat thresholds in conservation: Considerations, limitations, and future directions. Global Ecology and Conservation 3: 736–743. <https://doi.org/10.1016/j.gecco.2015.03.010>

Vieilledent, G., Grinand, C., Rakotomalala, F. A., Ranaivosoa, R., Rakotoarijaona, J. R., et al. 2018. Combining global tree cover loss data with historical national forest-cover maps to look at six decades of deforestation and forest fragmentation in Madagascar. Biological Conservation 222: 189–197. <https://doi.org/10.1016/j.biocon.2018.04.008>

Waeber, P. O., Rafanoharana, S., Rasamuel, H. A. and Wilmé, L. 2020. Parks and reserves in Madagascar: Managing biodiversity for a sustainable future. In: Protected Areas, National Parks and Sustainable Future. A. N. Bakar and M. N. Suratman (eds.), pp 89–108. IntechOpen, London. <https://doi.org/10.5772/intechopen.85348>

Wardle, D. A., Yeates, G. W., Barker, G. M. and Bonner, K. I. 2006. The influence of plant litter diversity on decomposer abundance and diversity. Soil Biology and Biochemistry 38, 5: 1052–1062. <https://doi.org/10.1016/j.soilbio.2005.09.003>

Warren, M. W. and Zou, X. 2002. Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico. Forest Ecology and Management 170, 1–3: 161–171. <https://doi.org/10.1016/S0378-1127(01)00770-8>

Wesener, T. 2009. Unexplored richness: discovery of 31 new species of Giant Pill-Millipedes endemic to Madagascar, with a special emphasis on microendemism (Diplopoda, Sphaerotheriida). Zootaxa 2097: 1–134. <http://dx.doi.org/10.11646/zootaxa.2097.1>

Wesener, T., Enghoff, H. and Sierwald, P. 2009. Review of the Spirobolida on Madagascar, with descriptions of twelve new genera, including three genera of 'fire millipedes' (Diplopoda). ZooKeys 19: 1–128. <https://doi.org/10.3897/zookeys.19.221>

Wesener, T. and Schütte, K. 2010. Swarming behaviour and mass occurrence in the world's largest giant pill-millipede species, Zoosphaerium neptunus, on Madagascar and its implication for conservation efforts (Diplopoda: Sphaerotheriida). Madagascar Conservation & Development 5, 2: 89–94. <https://doi.org/10.4314/mcd.v5i2.63137>

Wesener, T. and Wägele, J.-W. 2008. The giant pill-millipedes of Madagascar: Revision of the genus Zoosphaerium (Myriapoda, Diplopoda, Sphaerotheriida). Zoosystema 30, 1: 5–85. Available online <http://sciencepress.mnhn.fr/sites/default/files/articles/pdf/z2008n1a1.pdf>

Yang, X., Warren, M. and Zou, X. 2007. Fertilization responses of soil litter fauna and litter quantity, quality, and turnover in low and high elevation forests of Puerto Rico. Applied Soil Ecology 37, 1–2: 63–71. <https://doi.org/10.1016/j.apsoil.2007.03.012>

Zanella, A., Ponge, J.-F. and Briones, M. J. I. 2018. Humusica 1, article 8: Terrestrial humus systems and forms—Biological activity and soil aggregates, space-time dynamics. Applied Soil Ecology 122: 103–137. <https://doi.org/10.1016/j.apsoil.2017.07.020>

Vegetation thresholds for the occurrence of millipedes (Diplopoda) in different tropical forest types in Andasibe, Madagascar

Downloads

Published

30-06-2020

Issue

Section

Articles