Early Holocene fauna from a new subfossil site: A first assessment from Christmas River, south central Madagascar

Authors

  • Kathleen M. Muldoon Department of Anatomy, The Geisel School of Medicine at Dartmouth, and Department of Anthropology, Dartmouth College, HB 7100, Hanover, New Hampshire 03755
  • Brooke E. Crowley Departments of Geology and Anthropology, University of Cincinnati, Cincinnati OH 45221
  • Laurie R. Godfrey Department of Anthropology, University of Massachusetts, Amherst, Amherst MA 01003
  • Armand Rasoamiaramanana Département de Paléontologie et Anthropologie Biologique, Université d’Antananarivo, Antananarivo
  • Adam Aronson Institute for the Conservation of Tropical Environments, Stony Brook University, Stony Brook NY
  • Jukka Jernvall Developmental Biology Program, Institute of Biotechnology, and Department of Ecology and Systematics, University of Helsinki, FIN-00014 Helsinki
  • Patricia C. Wright Institute for the Conservation of Tropical Environments, Stony Brook University, Stony Brook NY
  • Elwyn L. Simons Division of Fossil Primates, Duke University Lemur Center, Duke University, Durham, North Carolina 27705

DOI:

https://doi.org/10.4314/mcd.v7i1.5

Keywords:

Madagascar, subfossil, lemurs, Hippopotamus, biogeography, subfossile, lémuriens, hippopotame, biogéographie, Quaternary, Quaternaire, hautes-terres, highlands, climate, climat

Abstract

We report on faunal remains recovered during recent explo­rations at ‘Christmas River’, the only subfossil locality known from Madagascar’s south central plateau. Recovered remains of several extinct taxa date to approximately 10,000 14C years before present (BP), including crocodiles, tortoises, the elephant bird Aepyornis, the carnivoran Cryptoprocta spelea, the lemurs Archaeolemur majori, Pachylemur insignis, and Megaladapis edwardsi, and abundant remains of the dwarf hippopotamus, Hippopotamus lemerlei. The presence of southern – limited, forest – dependent species at Christmas River supports the hypothesis that forest once extended, perhaps discontinu­ously, across the central highlands towards the west. One theory is that sites in the north central highlands, which are higher in elevation, maintained more mesic conditions during Plio–Quaternary climate shifts than those of the lower elevation sites of the south central highlands. Thus, elevation above sea level may have acted as a filter that limited species dispersal across the island in the past. Such a scenario would explain the distinction between more humid, higher elevation, northern highland subfossil communities versus more arid, lower eleva­tion, southern subfossil communities. Continued exploration at Christmas River thus provides a remarkable opportunity for deciphering ecological changes that have taken place in south central Madagascar during the Holocene.

 

RÉSUMÉ

Madagascar est reconnue comme l’une des régions les plus sensibles du monde en ce qui concerne les menaces pesant sur sa biodiversité, et cela à cause de niveaux d’endémisme inégalés, d’une diversité variée et d’un impact humain important sur l’environnement. Suite à la colonisation par l’Homme il y a plus de 2000 ans, des extinctions de masse de la faune et un important recul forestier ont eu lieu en laissant des marques sur les écosystèmes modernes qui sont dans un état de bouleversement écologique. Certaines plantes endémiques, par exemple, ont perdu d’importantes espèces mutualistes, des animaux ont été obligés d’exploiter d’autres ressources ou habiter des endroits auxquels ils sont mal adaptés. La diversité des plantes et des animaux a diminué, est menacée ou a même complètement disparue de certaines routes de dissémination. Bien que l’Homme soit largement incriminé dans son rôle de déclencheur de ces extinctions massives, les transformations anthropiques qui ont contribué au changement du climat sont controversées. Les hautes-terres de Madagascar sont actuellement dominées par des zones herbeuses étendues qui agissent comme des barrières empêchant les mouvements de la faune de part et d’autre de l’île. Nous suggérons qu’une forêt humide plus ou moins continue devait s’étendre sur les hautes-terres. Des informations paléoécologiques des hautes-terres du Centre sud sont nécessaires pour évaluer cette hypothèse afin de démêler la contribution relative des facteurs climatiques et anthropiques dans les changements paléoécologiques de la région. Cependant, les stations de subfossiles étaient jusqu’alors inconnues dans cette région.

Nous présentons ici les résultats de recherches réalisées sur les restes fauniques découverts au cours de fouilles récentes à Christmas River, la seule station de subfossiles connue des hautes-terres du Centre sud de Madagascar. Des restes de plusieurs espèces datant approximativement de 10,000 14C B.P. ont été identifiés dont des restes appartenant à des espèces de crocodile, de tortue, de l’Aepyornis, du carnivore Cryptoprocta spelea, des lémuriens Archaeolemur majori, Pachylemur insignis et Megaladapis edwardsi ainsi que de nombreux restes de l’hippopotame nain Hippopotamus lemerlei. La présence à Christmas River d’espèces sylvicoles endémiques du Sud appuie l’hypothèse de l’existence d’une forêt, certainement discontinue, mais qui s’étendait sur les hautes-terres centrales en se poursuivant vers l’ouest. Une théorie a proposé que les sites septentrionaux des hautes-terres centrales, à des altitudes plus élevées, maintenaient des conditions plus humides au cours des changements du Plio–quaternaire que les sites méridionaux de ces hautes-terres centrales. Ainsi, dans le passé, l’altitude a dû agir comme un filtre qui empêchait la dispersion des espèces d’un endroit à l’autre de l’île. Un tel scénario expliquerait la distinction entre les communautés subfossiles du nord des hautes-terres qui étaient plus humides à haute altitude et les communautés subfossiles du sud aride à basse altitude. La poursuite de l’exploration à Christmas River constitue une occasion unique pour décoder les changements écologiques qui sont intervenus dans le Sud de cette région centrale de Madagascar au cours de l’Holocène.

Author Biography

Kathleen M. Muldoon, Department of Anatomy, The Geisel School of Medicine at Dartmouth, and Department of Anthropology, Dartmouth College, HB 7100, Hanover, New Hampshire 03755

Department of Anatomy, Dartmouth Medical School

and

Department of Anthropology, Dartmouth College

References

Albrecht, G. H., Jenkins, P. D. and Godfrey, L. R. 1990. Ecogeographic size variation among the living and subfossil prosimians of Madagascar. American Journal of Primatology 22, 1: 1–50. (doi:10.1002/ajp.1350220102)

Burgess, N., Hales, J. D., Underwood, E., Dinerstein, E., Olson, D., Itoua, I., Schipper, J., Ricketts, T. and Newman, K. 2004. Terrestrial Ecoregions of Africa and Madagascar: A Conservation Assessment. Island Press, Washington, D.C.

Burney, D. A. 1999. Rates, patterns, and processes of landscape transfor¬mation and extinction in Madagascar. In: Extinctions in Near Time: Causes, Contexts, Consequences. R. D. E. MacPhee, (ed.), pp 145–164. Kluwer Academic/Plenum Publishers, New York.

Burney, D. A., James, H. F., Grady, F. V., Rafamantanantsoa, J.-G., Ramilisonina, Wright, H. T. and Cowart, J. B. 1997. Environmental change, extinc¬tion and human activity: Evidence from caves in NW Madagascar. Journal of Biogeography 24, 6: 755–767. (doi:10.1046/j.1365-2699.1997.00146.x)

Burney, D. A., Robinson, G. S. and Burney, L. P. 2003. Sporormiella and the late Holocene extinctions. Proceedings of the National Academy of Sciences U.S.A. 100, 19: 10800–10805. (doi:10.1073/pnas.1534700100)

Burney, D. A., Burney, L. P., Godfrey, L. R., Jungers, W. L., Goodman, S. M., Wright, H. T. and Jull, A. J. T. 2004. A chronology for late prehistoric Madagascar. Journal of Human Evolution 47, 1–2: 25–63. (doi:10.1016/j.jhevol.2004.05.005)

Consiglio, T., Schatz, G. E., McPherson, G., Lowry II, P. P., Rabenantoandro, J., Rogers, Z. S., Rabehovitra, R. and Rabehevitra, D. 2006. Deforestation and plant diversity of Madagascar’s littoral forests. Conservation Biology 20, 6: 1799–1803. (doi:10.1111/j.1523-1739.2006.00562.x)

Crowley, B. E. 2010. A refined chronology of prehistoric Madagascar and the demise of the megafauna. Quaternary Science Reviews 29, 19–20: 2592–2604. (doi:0.1016/j.quascirev.2010.06.030)

Crowley, B. E., Godfrey, L. R. and Irwin, M. T. 2011. A glance to the past: Subfossils, stable isotopes, seed dispersal, and lemur species loss in southern Madagascar. American Journal of Primatology 73, 1: 25–37. (doi:10.1002/ajp.20817)

Crowley, B. E. 2012. Stable isotope techniques and applications for primatologists. International Journal of Primatology 33, 3:673–701. (doi:10.1007/s10764-012-9582-7)

Crowley, B. E., Godfrey, L. R., Guilderson, T. P., Zermeno, P., Koch, P. L. and Dominy, N. J. 2012. Extinction and ecological retreat in a community of primates. Proceedings of the Royal Society of London B. (doi:10.1098/rspb.2012.0727)

Cuozzo, F. P. and Sauther, M. L. 2006. Severe wear and tooth loss in wild ring-tailed lemurs (Lemur catta): A function of feeding ecology, dental structure, and individual life history. Journal of Human Evolution 51, 5: 490–505. (doi:10.1016/j.jhevol.2006.07.001)

Ganzhorn, J. U., Lowry II, P. P., Schatz, G. E. and Sommer, S. 2001. The biodiversity of Madagascar: One of the world’s hottest hotspots on its way out. Oryx 35, 4: 346–348. (doi:10.1046/j.1365-3008.2001.00201.x)

Godfrey, L. R., Sutherland, M. R., Petto, A. J., and Boy, D. S. 1990. Size, space, and adaptation in some subfossil lemurs from Madagascar. American Journal of Physical Anthropology 81, 1: 45–66. (doi:10.1002/ajpa.1330810107)

Godfrey, L. R. and Irwin, M. T. 2007. The evolution of extinction risk: Past and present anthropogenic impacts on the primate communities of Madagascar. Folia Primatologica 78: 405–419. (doi:10.1159/000105152)

Godfrey, L. R., Jungers, W. L., Simons, E. L., Chatrath, P. S. and Rakotosamimanana, B. 1999. Past and present distributions of lemurs in Madagascar. In: New Directions in Lemur Studies. B. Rakotosamimanana, H. Rasamimanana, J. U. Ganzhorn and S. M. Goodman (eds.), pp 19–53. Kluwer Academic Publishers, New York.

Godfrey, L. R., Jungers, W. L., Schwartz, G. T. and Irwin, M. T. 2008. Ghosts and orphans: Madagascar’s vanishing ecosystems. In: Elwyn Simons: A Search for Origins. J. G. Fleagle and C. C. Gilbert (eds.), pp 361–395. Springer, New York.

Godfrey, L. R., Winchester, J. M., King, S. J., Boyer, D. M. and Jernvall, J. 2012. Dental topography indicates ecological contraction of lemur communities. American Journal of Physical Anthropology 148, 2: 215–227. (doi:10.1002/ajpa.21615)

Goodman, S. M. and Benstead, J. P. 2005. Updated estimates of biotic diversity and endemism for Madagascar. Oryx 39, 1: 73–77. (doi:10.1017/S0030605305000128)

Goodman, S. M. and Rakotondravony, D. 1996. The Holocene distribution of Hypogeomys (Rodentia: Muridae: Nesomyinae) on Madagascar. In: Biogéographie de Madagascar. W. R. Lourenço (ed.), pp 283–293. ORSTOM, Paris.

Goodman, S. M. and Rakotozafy, L. M. A. 1997. Subfossil birds from coastal sites in western and southwestern Madagascar: A paleoenvironmental reconstruction. In: Natural Change and Human Impact in Madagascar. S. M. Goodman and B. D. Patterson (eds.), pp 257–279. Smithsonian Institution, Washington, D. C.

Goodman, S. M. and Ramanamanjato, J. B. 2007. A perspective on the paleoecology and biogeography of extreme southeastern Madagascar, with special reference to animals. In: Biodiversity, Ecology and Conservation of Littoral Ecosystems in Southeastern Madagascar, Tolagnaro (Fort Dauphin). J. U. Ganzhorn, S. M. Goodman and M. Vincelette (eds.), pp 25–48. Smithsonian Institution, Washington, D. C.

Goodman, S. M., Vasey, N. and Burney, D. A. 2006. The subfossil occurrence and paleoecological implications of Macrotarsomys petteri (Rodentia: Nesomyidae) in extreme southeastern Madagascar. Comptes Rendus Palevol 5: 953–962. (doi:10.1016/j.crpv.2006.09.008)

Goodman, S. M., Vasey, N. and Burney, D. A. 2007. Description of a new species of subfossil shrew tenrec (Afrosoricida: Tenrecidae: Microgale) from cave deposits in southeastern Madagascar. Proceedings of the Biological Society of Washington 120, 4: 367–376. (doi:10.2988/0006-324X(2007)120[367:DOANSO]2.0.CO;2)

Jernvall, J., Wright, P. C., Ravoavy, F. L. and Simons, E. L. 2003. Report on findings of subfossils at Ampoza and Ampanihy in southwestern Madagascar. Lemur News 8: 21–23.

Jouffroy, F.-K. 1963. Contribution à la connaissance du genre Archaeolemur, Filhol 1895. Annales de Paléontologie 49: 129–155.

Lamberton, C. 1934. Contribution à la connaissance de la faune subfossile de Madagascar. Lémuriens et Ratites: Les Megaladapis. Mémoires de l’Académie Malgache 17: 47–105.

Mahé, J. & Sourdat, M. 1972. Sur l’extinction des vertébrés subfossiles et l’aridification du climat dans le Sud-ouest de Madagascar. Bulletin de la Société de Géologie de France 14: 295–309.

McCormac, F. G., Hogg, A. G., Blackwell, P. G., Buck, C. E., Higham, T. F. G. and Reimer, P. J. 2004. SHCal04 southern hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon 46, 3: 1087–1092.

Moat, J. and Smith, P. 2007. Atlas of the Vegetation of Madagascar. Kew Publishing, Royal Botanic Gardens, Kew.

Muldoon, K. M. 2010. Paleoenvironment of Ankilitelo Cave (late Holocene, southwestern Madagascar): Implications for the extinction of giant lemurs. Journal of Human Evolution 58, 4: 338–352. (doi:10.1016/j.jhevol.2010.01.005)

Muldoon, K. M. and Goodman, S. M. 2010. Ecological biogeography of Malagasy non-volant mammals: community structure is correlated with habitat. Journal of Biogeography 37, 6: 1144–1159. (doi:10.1111/j.1365-2699.2010.02276.x)

Muldoon, K. M., DeBlieux, D. D., Simons, E. L. and Chatrath, P. J. 2009. The subfossil occurrence and paleoecological significance of small mammals at Ankilitelo Cave, southwestern Madagascar. Journal of Mammalogy 90, 5: 1111–1131. (doi:10.1644/08-MAMM-A-242.1)

Ramanamanjato, J.-B., Mcintyre, P. B. and Nussbaum, R. A. 2002. Reptile, amphibian, and lemur diversity of the Malahelo Forest, a biogeo¬graphical transition zone in southeastern Madagascar. Biodiversity and Conservation 11, 10: 1791–1807. (doi:10.1023/A:1020325415489)

Samonds, K. E. 2007. Late Pleistocene bat fossils from Anjohibe Cave, northwestern Madagascar. Acta Chiropterologica 9, 1: 39–65. (doi:10.3161/1733-5329(2007)9[39:LPBFFA]2.0.CO;2)

Steunes, S. 1989. Taxonomy, habits and relationships of the subfossil Madagascan hippopotami Hippopotamus lemerlei and H. madagascariensis. Journal of Vertebrate Paleontology 9, 3: 241–268. (doi:10.1080/02724634.1989.10011761)

Stuiver, M. and Reimer, P. J. 1993. Extended 14C database and revised Calib 3.0 14C age calibration program. Radiocarbon 35, 1: 215–230.

Virah-Sawmy, M., Bonsall, M. B. and Willis, K. J. 2009a. ‘Tales of Symphonia’: Extinction dynamics in response to past climate change in Madagascan rainforests. Biology Letters 5, 6: 821–825. (doi:10.1098/rsbl.2009.0428)

Virah-Sawmy, M., Gillson, L. and Willis, K. J. 2009b. How does spatial heterogeneity influence resilience to climatic changes? Ecological dynamics in southeast Madagascar. Ecological Monographs 79, 4: 557–574. (doi:10.1890/08-1210.1)

Virah-Sawmy, M., Willis, K. J. and Gillson, L. 2010. Evidence for drought and forest declines during the recent megafaunal extinctions in Madagascar. Journal of Biogeography 37, 3: 506–519. (doi:10.1111/j.1365-2699.2009.02203.x)

Weston, E. M. and Lister, A. M. 2009. Insular dwarfism in hippos and a model for brain size reduction in Homo floresiensis. Nature 456: 85–88. (doi:10.1038/nature07922)

Wilmé, L., Goodman, S. M. and Ganzhorn, J. U. 2006. Biogeographic evolution of Madagascar’s microendemic biota. Science 312: 1063–1065. (doi:10.1126/science.1122806)

Downloads

Published

19-05-2012

Issue

Section

Articles

Most read articles by the same author(s)