Comparison of parasitic infections and body condition in rufous mouse lemurs (Microcebus rufus) at Ranomafana National Park, southeast Madagascar

Authors

  • Herman Andry Rafalinirina University of Antananarivo, Department of Paleontology and Biological Anthropology
  • Tuomas Aivelo University of Helsinki, Institute of Biotechnology
  • Patricia Chapple Wright Stony Brook University, Dept of Anthropology
  • Jeannot Randrianasy University of Antananarivo, Department of Paleontology and Biological Anthropology

Keywords:

parasites, infections, Valbio, ectoparasites, torpor, Microcebus rufus, Ranomafana National Park

Abstract

Body condition may be an important indicator for many infectious diseases and parasites, and may ultimately affect an individual’s fitness. Although some research has correlated body condition and parasite loads in other nonhuman primates, little information has been investigated in prosimian primates. In this study we compare parasitic infections and body condition in a member of the Cheirogaleidae family (Microcebus rufus: rufous mouse lemur) at Ranomafana National Park, southeast Madagascar. This species is characterized by seasonal fattening in preparation for the dry season followed by torpor, and it is important to understand the fluctuation between parasites and infections according to seasonal body condition. We trapped 72 individuals of the species inside Ranomafana National Park (RNP) after the dry season. These individuals were brought to the Centre Valbio Laboratory (CVB) and were subcutaneously micro-chipped with subdermal transponders for permanent identification. We recorded morphometric data, body condition, species richness and prevalence of ectoparasites and gastrointestinal parasites. We found that individuals that had both high number of parasite species as well as high prevalence of ectoparasites and gastrointestinal parasites had better body condition. There is some indication that being in good condition is important in controlling infections.

 

RÉSUMÉ

La condition physique peut être un indicateur important pour de nombreuses maladies infectieuses et pour les parasites, et peut finalement affecter l'aptitude d'un individu. Si certaines études ont montré la relation entre condition physique et charges parasitaires chez des primates non humains, peu d'informations étaient disponibles en ce qui concerne les prosimiens. Dans cette étude, les infections parasitaires et l'état de santé du microcèbe roux Microcebus rufus de la famille des Cheirogaleidae ont été étudiées dans le Parc National de Ranomafana, Sud-est de Madagascar. Cette espèce est caractérisée par sa capacité à accumuler des matières grasses à la base de la queue afin de se préparer à la saison sèche au cours de laquelle elle rentre en torpeur ; il est donc important de comprendre la fluctuation saisonnière entre les parasites et les infections selon l'état de santé des individus. Soixante-douze animaux de cette espèce ont été capturés à l'intérieur du Parc National de Ranomafana après la saison sèche. Les individus capturés ont été rapportés au Centre Valbio où ils ont été marqués avec une puce électronique sous-cutanée servant de transpondeur pour l'identification permanente. Nous avons collecté des données morphométriques pour documenter la condition physique, la richesse spécifique et la prévalence des ectoparasites et des parasites gastro-intestinaux. Nous avons constaté que les individus présentant à la fois un grand nombre d'espèces de parasites ainsi qu’une forte prévalence d’ectoparasites et de parasites gastro-intestinaux avaient une meilleure condition physique. Les résultats semblent indiquer qu’un bon état est important dans le contrôle des infections.

Author Biographies

Herman Andry Rafalinirina, University of Antananarivo, Department of Paleontology and Biological Anthropology

Phd candidate

Tuomas Aivelo, University of Helsinki, Institute of Biotechnology

Phd candidate

Patricia Chapple Wright, Stony Brook University, Dept of Anthropology

Professor

Jeannot Randrianasy, University of Antananarivo, Department of Paleontology and Biological Anthropology

Professor

References

Aho, J. M. 1990. Helminth communities of amphibians and reptiles: comparative approaches to understanding patterns and processes. In: Parasite Communities: Patterns and Processes. G. W. Esch, A. O. Bush and J. M. Aho (eds.), pp 156–195. Chapman and Hall, London.

Alzaga, V., Vicente, J., Villauna, D., Acevedo, P., Casas, F. and Gortazar, C. 2008. Body condition and parasite intensity correlates with escape capacity in Iberian hares (Lepus granatensis). Behavioral Ecology Sociobiology 62, 5: 769–775. (doi:10.1007/s00265-007-0502-3)

Altizer, S., Nunn, C. L. and Lindenfors, P. 2007. Do threatened hosts have fewer parasites? A comparative study in primates. Journal of Animal Ecology 76: 304–314. (doi:10.1111/j.1365-2656.2007.01214.x)

Atsalis, S. 1999. Seasonal fluctuation in body fat and activity levels in a rain-forest species of Mouse lemur, Microcebus rufus. International Journal of Primatology 20, 6: 883–910. (doi:10.1023/A:1020826502103)

Atsalis S. 2008. Diet and feeding ecology. In: The Natural History of the Brown Mouse Lemur. R. W. Sussman (ed.), pp 63–65. Prentice Hall, Upper Saddle River NJ.

Beldomenico, P. M. and Begon, M. 2010. Disease spread, susceptibility and infection intensity: vicious circles? Trends in Ecology and Evolution 25, 1: 21–27. (doi:10.1016/j.tree.2009.06.015)

Bize, P., Jeanneret, C., Klopfenstein, A. and Roulin, A. 2008. What makes a host profitable? Parasites balance host nutritive resources against immunity. American Naturalist 171, 1: 107–118. (doi:10.1086/523943)

Blackwell, G. L. 2002. A potential multivariate index of condition for small mammals. New Zealand Journal of Zoology 29, 3: 195–203. (doi:10.1080/03014223.2002.9518303)

Burnham, K. P. and Anderson, D. R. 2002. Model Selection and Multimodel Inference, Springer, New York.

Chapman, C. A., Wasserman, M. D., Gillespie, T. R., Speirs, M. L., Lawes, M. J. et al. 2006. Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments? American Journal of Physical Anthropology 131, 4: 525–534. (doi:10.1002/ajpa.20477)

Coe, C. L. 1993. Psychosocial factors and immunity in nonhuman-primates – a review. Psychosomatic Medicine 55, 3: 298–308.

Coop, R. L. and Holmes, P. H. 1996. Nutrition and parasite interaction. International Journal for Parasitology 26, 8–9: 951–962. (doi:10.1016/S0020-7519(96)80070-1)

Durden, L. A., Zohdy, S. and Laakkonen, J. 2010. Lice and ticks of the eastern rufous mouse lemur, Microcebus rufus, with descriptions of the male and third instar nymph of Lemurpediculus verruculosus (Phthiraptera: Anoplura). Journal of Parasitology 96, 5: 874–878. (doi:10.1645/GE-2512.1)

Eley, R. M., Strum, S. C., Muchemi, G. and Reid, G. D. F. 1989. Nutrition, body condition, activity patterns, and parasitism of free-ranging troops of olive baboons (Papio anubis) in Kenya. American Journal of Primatology 18, 3: 209–219. (doi:10.1002/ajp.1350180304)

Ezenwa, V. O., Etienne, R. S., Luikart, G., Beja-Pereira, A. and Jolles, A. E. 2010. Hidden consequences of living in a wormy World: Nematode-induced immune suppression facilitates tuberculosis invasion in African buffalo. The American Naturalist 176, 5: 613–624. (doi:10.1086/656496)

Feliu, C., Renaud, F., Catzeflis, F., Hugot, J.-P., Durand P. and Morand, S. 2001. Comparative analysis of parasite species richness of Iberian rodents. Parasitology 115, 4: 453–466. (doi:10.1017/S0031182097001479)

Folstad, I. and Karter, A. J. 1992. Parasites, bright males, and the immunocompetence handicap. The American Naturalist 139, 3: 603–622. (doi:10.1086/285346)

Friedman, E. M. and Lawrence, D. A. 2002. Environmental stress mediates changes in neuroimmunological interactions. Toxicological Sciences 67, 1: 4–10. (doi:10.1093/toxsci/67.1.4)

Gillespie, T.R. 2006. Noninvasive assessment of gastrointestinal parasite infections in free-ranging primates. International Journal of Primatology 27, 4: 1129–1143. (doi:10.1007/s10764-006-9064-x)

Gillespie, T. R. and Chapman, C. A. 2005. Prediction of parasite infection dynamics in primate metapopulations based on attributes of forest fragmentation. Conservation Biology 20, 2: 441–448. (doi:10.1111/j.1523-1739.2006.00290.x)

Gillespie, T. R., Chapman, C. A. and Greiner, E. C. 2005. Effects of logging on gastrointestinal parasite infections and infection risk in African primates. Journal of Applied Ecology 42, 4: 699–707. (doi:10.1111/j.1365-2664.2005.01049.x)

Green, A. J. 2001. Mass/length residuals: measures of body condition or generators of spurious results? Ecology 82, 5: 1473–1483. (doi:10.1890/0012-9658(2001)082[1473:MLRMOB]2.0.CO;2)

Gregory, R. D. 1990. Parasites and host geographic range as illustrated by waterfowl. Functional Ecology 4, 5: 645–654. (doi:10.2307/2389732)

Jakob, E. M., Marshall, S. D. and Uetz, G. W. 1996. Estimating fitness: a comparison of body condition indices. Oikos 77, 1: 61–67. (doi:10.2307/3545585)

LaBarbera, M. 1989. Analyzing body size as a factor in ecology and evolution. Annual reviews of Ecology and Systematic 20: 97–117. (doi:10.1146/annurev.es.20.110189.000525)

Lewis, R. J. and Kappeler, P. M. 2005. Seasonality, body condition, and timing of reproduction in Propithecus verreauxi verreauxi in the Kirindy forest. American Journal of Primatology 67, 3: 347–364. (doi:10.1002/ajp.20187)

Martin, R.D. 1972. A preliminary field study of the lesser mouse lemur Microcebus murinus (J. F. Miller 1777). Zeitschrift für Tierpsychology 9: 43–89.

Martin, L. B., Scheurlein II, A. and Wikelski, M. 2003. Immune activity elevates energy expenditure of house sparrows: a link between direct and indirect costs? Proceedings of the Royal Society of London, B 270: 153–158. (doi:10.1098/rspb.2002.2185)

May, R. M. 1988. Conservation and disease. Conservation Biology 2, 1: 28–30. (doi:10.1111/j.1523-1739.1988.tb00332.x)

Mbora, D. N. M. and McPeek, M. A. 2009. Host density and human activities mediate increased parasite prevalence and richness in primates threatened by habitat loss and fragmentation. Journal of Animal Ecology 78, 1: 210–218. (doi:10.1111/j.1365-2656.2008.01481.x)

Moore, S. L. and Wilson, K. 2002. Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297: 2015–2018. (doi:10.1126/science.1074196)

Munyeme, M., Munang’andu, H. M., Muma, J. B., Nambota, A. M., Biffa, D. and Siamudaala, V. M. 2010. Investigating effects of parasite infection on body condition of the Kafue lechwe (Kobus leche kafuensis) in the Kafue basin. BMC Research Notes 3: #346. (doi:10.1186/1756-0500-3-346)

Neuhaus, P. 2003. Parasite removal and its impact on litter size and body condition in Columbian ground squirrels (Spermophilus columbianus). Proceedings of the Royal Society of London, B 270, S2: 213–215. (doi:10.1098/rsbl.2003.0073)

Nunn, C. L., Altizer, S., Jones, K. E. and Sechrest, W. 2003. Comparative tests of parasite species richness in Primates. The American Naturalist 162, 5: 597–614. (doi:10.1086/378721)

Radespiel, U., Schaber, K., Kessler, S. E., Schaarschmidt, F. and Strube, C. 2015. Variations in the excretion patterns of helminth eggs in two sympatric mouse lemur species (Microcebus murinus and M. ravelobensis) in northwestern Madagascar. Parasitology Research 114, 3: 941–954. (doi:10.1007/s00436-014-4259-0)

Raharivololona, B. and Ganzhorn, J. U. 2010. Seasonal variations in gastrointestinal parasites excreted by the gray mouse lemur Microcebus murinus in Madagascar. Endangered Species Research 11, 2: 113–122. (doi:10.3354/esr00255)

Rasoazanabary, E. 2006. Male and female activity patterns in Microcebus murinus during the dry season at Kirindy forest, western Madagascar. International Journal of Primatology 27, 2: 437–464. (doi:10.1007/s10764-006-9017-4)

Schalk, G. and Forbes, M. R. 1997. Male biases in parasitism of mammals: effects of study type, host age, and parasite taxon. Oikos 78, 1: 67–74. (doi:10.2307/3545801)

Sheldon, B. C. and Verhulst, S. 1996. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends in Ecology and Evolution 11, 8: 317–321. (doi:10.1016/0169-5347(96)10039-2)

Schulte-Hostedde, A. I., Zinner, B., Millar, J. S. and Hickling, G. J. 2005. Restitution of mass-size residuals: Validating body condition indices. Ecological Society of America 86, 1: 155–163. (doi:10.1890/04-0232)

Seppälä, O., Liljeroos, K., Karvonen, A. and Jokela, J. 2008. Host condition as a constraint for parasite reproduction. Oikos 117, 5: 749–753. (doi:10.1111/j.0030-1299.2008.16396.x)

Streicker, D. G., Fenton, A. and Pedersen, A. B. 2013. Differential sources of host species heterogeneity influence the transmission and control of multihost parasites. Ecology Letters 16, 8: 975–984. (doi:10.1111/ele.12122)

Sugiura, N. 1978. Further analysis of the data by Akaike’s information criterion and the finite correction. Communications in Statistics Theory and Methods 7, 1: 13–26. (doi:10.1080/03610927808827599)

Tompkins, D. M., Dunn, A. M., Smith M. J. and Telfer, S. 2011. Wildlife diseases: from individuals to ecosystems. Journal of Animal Ecology 80, 1: 19–38. (doi:10.1111/j.1365-2656.2010.01742.x)

Wilford, O. 1986. Animal Parasites: Their Life Cycles and Ecology. Dover Publications, New York.

Willis, C. and Poulin, R. 1999. Effects of the tapeworm Hymenolepis diminuta on maternal investement in rats. Canadian Journal of Zoology 77, 6: 1001–1005 (doi:10.1139/z99-075)

Wilson, K., Bjørnstad, O. N., Dobson, A. P., Merler, S., Poglayen, G. et al. 2002. Heterogeneities in macroparasite infections: patterns and processes. In: The Ecology of Wildlife Diseases. P. J. Hudson, A. Rizzoli, B. T. Grenfell, H. Heesterbeek and A. P. Dobson (eds.), pp 6–44. Oxford University Press, New York.

Wright, P. C. 1992. Primate ecology, rainforest conservation and economic development: Building a national park in Madagascar. Evolutionary Anthropology 1, 1: 25–33. (doi:10.1002/evan.1360010108)

Wright, P. C. and Andriamihaja, B. A. 2002. Making a rain forest national park work in Madagascar: Ranomafana National Park and its long-term research commitment. In: Making Parks Work: Strategies for Preserving Tropical Nature. J. Terborgh, C. van Schaik, M. Rao and L. Davenport (Eds.), pp 112–136. Island Press, Washington D.C.

Wright, P. C. and Martin, L. B. 1995. Predation, pollination and torpor in Cheirogaleus major and Microcebus rufus in Madagascar rain forest. In: The Nocturnal Prosimian. L. Alterman, K. Izard and G. Doyle (Eds.), pp 45–60. Plenum Press, New York.

Wright, P. C., Arrigo-Nelson, S. J., Hogg, K. L., Bannon, B., Morelli, T. L. et al. 2009. Habitat disturbance and seasonal fluctuations of lemur parasites in the rain forest of Ranomafana National Park, Madagascar. In: Primate Parasite Ecology: The Dynamics and Study of Host-Parasite Relationships. M. A. Huffman and C. A. Chapman (Eds.), pp 311–330. Cambridge University Press, London.

Zohdy S. 2012. Senescence Ecology: Aging in a Population of Wild Brown Mouse Lemurs (Microcebus rufus). Unpubl. Ph.D. thesis, University of Helsinki, Finland. Available at <http://urn.fi/URN:ISBN:978-952-10-7727-2>

Zuk, M. and McKean, K. A. 1996. Sex differences in parasite infections: patterns and processes. International Journal of Parasitology 26, 10: 1009–1024. (doi:10.1016/S0020-7519(96)80001-4)

Strongyloides sp., Nematoda a parasite of Microcebus rufus from Ranomafana National Park, Madagascar

Downloads

Additional Files

Published

30-08-2015

Issue

Section

Articles